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THE PROBLEM OF SELECTING A GIVEN NUMBER OF REPRESENTATIVE
POINTS IN A NORMAL POPULATION AND A
GENERALIZED MILLS' RATIO

By

Kai-Tai Fang and Shu-Dong He

1. Introduction.

The problem of selecting a given number of representative points to
retain as much information of the population as possible arises in many
situations.

For example, in order to standardize clothes, we take p measure-
ments of the body of each of n individuals (in general, n is sufficiently
large), and project these P dimensional data onto a q dimensional
space (q = 1,2 or 3)vby principal components analysis of by some other
method. We wish to select m points that best represent the data in the
q-dimensipnal space. In Fang (1976), this problem is analyzed for one
and two-dimensional normal distributions where the intervals are of>equa1

lengths and the m points are centered in each interval.

Bofinger (1970) studied the question of grouping a continuous bi-
variate distribution by intervals on the marginals thereby obtaining a
discrete bivariate distribution. She sought the grouping that would
provide the maximum possible correlation between these marginal variables.
The solution is approximate when both marginals are grouped and exact when
only one margin is grouped. For the bivariate normal distribution with
one margin grouped, tables of interval end points that maximize the

correlation are provided up to 10 intervals.



Prior to this, Sitgreaves (1961) arrived at the same bivariate model
as Bofinger in connection with a query about determining the optimal item
difficulties in a special mental test design in psychometrics. The optimal

representative points, for k = 2,3,4,5 intervals under a bivariate normal
structure are determined in that paper by a graphical procedure
thus producing the optimal item difficulties for a test with k

items.

A paper by Max (1960) seeks to quantize the univariate normal dis-
tribution so that it can be represented by k points. Employing a mean
square error loss function, Max provides tables for k = 1,2,...,36 to
yield optimal representative points for digitizing the univariate
normal. There is a previous paper by Cox (1957) whose motivation is
quantization and who for the univariate normal provides a table of optimal
representative points for k = 2,...,6 groups. In Anderberg (1973) there is
discussion of sectionalizing the univariate normal distribution to transform
interval data to ordinal data for clustering procedures and some abridged
tables are given.

Max was motivated by a signal processing problem and it is in this
vein that Zador (1963) considered how to select a random discrete vector
in one and higher dimensions to approximate a continuous variable employing
a mean square error loss fﬁnction. He provided a generalized model for the
multivariate normal distribution and secured bounds on quantization errér
as a function of dimension and moments of the error term as the number
of representative points increased. A revised version of this work
appears in Zador (1982). The tables produced by these investigators
and the tables in this report yield the same listings except for compu-
tational accuracy. However, this report and the paper by Max contain

the most extensive tables.



We have been intérested in this subject since we worked on the
standardization of clothes. In October 1981 we, just as previous
authors, obtained independently the results in this paper. Later
Professor T. W. Anderson and V. Srinivasan told us of Cox's and Bofinger's
work. Recently, Professor H. Solomon introduced Zador, Max and Sitgreave's
work to us. It is a very interesting story in the history of Statistics
that several investigators, motivated by different applications were led
in the same methods, and obtained independently similar results over a
period of more than twénty years. Compared to other papers, ours gives
more theoretical proof of the computation of the representative points.
Perhaps it is valuable for people who want to compute more representative
points or to compute the representative points in two dimensional space.
In addition we give some basic results on the generalized Mills' ratio
that may be useful in statistical analysis.

Suppose the distribution of the population is N(u,Gz), where U
and o0 are known. We wish to determine m points XqsXpseeesX that

m

are the best representatives of the population.

What is the meaning of '"best"? We consider the loss function
® X,~X 2

(1.1) E(Xyyenes )=J min (——) ¢$)dx
"1 “m o 1<icm O

where ¢(x) denotes the density of the normal variate with mean 1
)
and variance 0 . Without loss of generality, we can assume U = 0,

and 0 = 1.

In order to.study properties of the solutions, we generalized Mills'
ratio, and give some basic properties of the generalized Mills' ratio in
Section 3. In Section 4 we discuss properties of the solution of some
equations. As a consequence, a computational procedure is suggested and
a table of RyseeesX for m < 31 obtained by computer is given in

Section 5.



2. “‘Preliminaries.

Rewrite (1.1) with pPp =0, 0 =1 as

(x,+x,)/2 v
(2.1)  £(xpseneaE) =J 1727 ex ) 20 () dx
(x,4x,)/2 +oo
+ f 273 (x—x2)2¢(x)dx+----+
(x,+x,)/2 (x _,+x)/2

2

(xx ) 29 ax

-4 ~lax
where Xy < v0e < X and ¢(x) = (27m) “e . In order to find

xl""’%m’ we solve the first derivative equations:

Bf(xl,...,xm)

ox.,
i

We obtain the following equations:

Ty
f 2(X1+X2)

(x-xl)¢(x)dx =0,
L(x,+x%.,)
f 27 xeax = 0,
(2.2) 5(xy+x,)

fﬁb (x-xm)¢(x)dx =0 .
L/ B(x L tx )

m-1 "m

=0, i=1,2,...,m .

Lemma 1. The solution of the equations (2.2) is symmetric about the

origin, i.e., X = "X ia1? i=1,2,...,m.



Proof. Let X "~ N(0,1), using the symmetry of the density of X about

the origin we have

E(min(xi—x)z) = E(min(xi+x)2) = E(min(—xi—x)z)

the lemma follows. Q.E.D.

From Lemma 1, we only find O < X <Xy < eee < Xy if m= 2k is

even and 0 = xO < xl < eos < Xy if m = 2k+l is odd. And the loss

functions become respectively

3 (x +x,) 2
(2.3) f(xl,...,xm) = Io (x—xl) d(x)dx
b (x,4x,)
+ fz 273 (x-x2)2¢(x)dx+,...+r (x-x) 29 (x)dx
%(xl+x2) %(xk_l+xk)
S
(2.4) f(xo,...,xm) = JO x ¢ (x)dx
Lz, +x,)
+ J 172 (x—xl)2¢(x)dx + o0 F J” (x—xk)2¢(x)dx .
L x

1 xy_ptx)

Let af(xl,..._,xk)/axi =0 and Bf(xo,xl,...,xk)/axi =0, i=}1,2,...,k, and

we obtain the following two systems of equations: if m = 2k



[6(0) - ¢Cs(xy¥x,)) = x; [0Ci(xHx,)) - 8(0)] ,

P Ca(x 4x,)) = 9 Ca(xytx,)) = x,[9Cs(x,4x,)) - 0Cs(x;+x,))]
(2.5) e . .
T ¢ Ca(xy oty 1)) = 0Ca(x 1 4x)) = % [8Ci(x _ +x)) - 0Ca(xy 5, N1,

L 9Ca(x %)) = x [1-0Cs(x _ +x, )1,
and if m = 2k+1,
0G5 %) = 6CsCetx,)) = x [00s(x+x,)) = 005 x1

¢(1/2(X1+X2)) -¢(‘/z(x2+x3)) = X2[<I>(1/z(x2+x3)) - <I>(‘/2(xl+x2))] s
2.6) < e

$Cs(xy_,tx .0 = CGalx _ tx)) =x  [9Cs(x_ 4% )) - oCa(x % _))]

$Cs(x, 4% )) = x [1- Calx _+x, )] .

Where &(x) is the normal cumulative distribution function with mean O

and variance 1. For any 0 < x <y <« define a function

_8(y) -0
2.7) M) = Do)

When y = », M(x,%) is the usual Mills' ratio M(x); thus we call
M(x,y) the generalized Mills' ratio. Now the systems of equations (2.5)

and (2.6) can be rewritten as follows with X1 =0

(2.8) = MICs(x,_+x,), Blxg+x, )] =1, 1=1,2,...,k,

i+l



where x0==-xl if m= 2k and ‘xo =0 4if m = 2k+l. 1In order to solve

the system of equations (2.8), it is necessary to study some properties

of M(x,y).

3. .Generalized Mills' ratio.

It can be verified that the generalized Mills' ratio defined by (2.2)

satisfies

2 2
2 mex,y) = (1= 72 )y L ix, y)-11 »

(3.1 M (x,5) = 5

3 (y %) -1
(3.2) M;,(x,y) =3y M(x,y) = (e 1) [1-yM(x,y)] (for y < «).

In general, we have by induction

k+2
(3.3) —— M(x,y) = u_ (X, y)M(x,y)-v,  (x,y) ,
kaazy k, % k,%

where vy Q(x,y) and Vi R(X,y) are defined by the following recursive formulae:
- ?

{uO’O(XQY) = 1’ VO,O(x’y) = o

3
uk+1,2(x,y) = 5 pk,g(x’y) + xq(x, ) xy)

3
vk+l’2(x,y) = q.(x’}')uk’z(x,Y) + BX Vk’n(x’y) b4
(3.4) <

“k,2+1(x’y) = % uk’z(x,y) + y(l-q(X,y))uk’z(x,y) R

i 2
l Vk,ﬂr}'l(x’y) = (l-Q(X’Y))uk’R(XsY) + ay vk,Q,(X’y) ’

and

2 2
(3.5) a(x,y) = (1-e 3V =Xyl



In particular, from (3.4) we find that

ul’o(XaY) = XQ(X,Y), Vl,O(x’y) = q(x,y),
uo’l(x,Y) = Y(l"Q(X,Y)), VO,l(x:Y) = l_q(XsY)’
u &y = 2xyq(x,y) (1-4(x,¥)), vy,1 G069 = Gety)a(x,y) (1-q(x,5)),

“z,o(X’Y) = 2x2q2(x,y)+(l-x2)q(x,y), vy %) 2xq2(x,y)-xq(x,y),
uo’z(x,y) = 2y2q2(x,y)-(3y2+l)q(x,y)+(y2+l),

Vo, (ksy) = y[1-3aGe,y)+2a7 (6,7 |

Consequently, U 2(x,y) and Vi z(x,y) are polynomials in q(x,y), i.e
9 b

k+2
(k,2) h
u  (x,y) = a, (x,mq” (x,y) ,
k, 8 jZO j
(3.6)
K+
(k,8) 3
v, (xy) = ] bV (x,y)q (x,y) ,
k,2 j=0 3

where a§k’2)(x,y) and bgk’Z)(x,y) are polynomials of x and y in
which the power of x 1is less or equal to k and the power of v is
less or equal to . By using (3.4) and (3.6), we can obtain the recur-

(ot (k, )

sive formulae for a ,y) and bj (x,y), too.

It is well known that (cf. Feller (1968), p. 193)

11 1.3 1.3.5 . ... 4 ;1 0 (2=
(3. 7) M(X) n % - 3 -+ ‘——5 - 7 + + ( 1) 2n+l ’
X p: 9 X X

where (2n-1)!! = (2n-1)(2n-3).--3.1. Similarly, by using integration by

parts we can find



X
2 2 y 2
= | -
=(‘1‘e@§-le%y)-f—-]‘-e%tdt
X y 2
x t
2 2 2 v 2
-1 . _1
=(le./2X__]_-.e’EY)_(_ie/2x__l_e'§y)+3 __l__e!gtdt
X y 3 3 4
X y X t
k . . 2.2, L2
(3.9) = Z (-l)J(Zj—l)!!(x (ZJ+1)e 85X -y (ZJ+1)e Yy
3=0
2
~
2 ae

v
+ 1wty f 2K,
X

Hi

Ilk + IZk (say) .

2 2

-1 -1 -
Then (e X T ) 1 is an overestimate of M(x,y) if k is zero

Tk
or even and is an underestimate of M(x,y) if k is odd. The following

lemma is useful later.

Lemma 2. M;(x,y) and M;(x,y) are negative for 0 < x <y <o and

for 0 < x <y <, respectively.

Proof. From (3.1) and (3.2) we only prove that

(3.10) x M(x,y)~1 < O for 0<x<y<®»,
and
(3.11) l-y M(z,y) < O for 0<x<y<w,

By using (3.8) we have



2 2 2 v 2
-1 oL -1 _1 y 1
M(x,y)-1 = (e 2 = ¥ ) e @ (1-F-x f LT g
y 2
X t
For any fixed x > 0, define a function of vy
2 2
_1 Y 1
g(y) = e P (1-3) -x J ~—%-e gt , v > x.
y Xt

Then xM(x,y)-1 < 0 if and only if g(y) < 0 for y > x. The latter
2

1
L o7 4t < 0 and

is true because g(x+0) = 0, g(») = -x f; -5 e
t

2

g'(y) = —(y-X)e_;éy <0.

The inequality (3.10) can be proved by a similar method. Q.E.D.
In the next section we need the following lemma.
Lemma 3. For x > 0
d(x) (x+2M(x)) < 1 .
Proof. Let f£(x) = ¢(x)(x+2M(x))-1. Then the lemma follows the fact that

£Q0) = 0 and £'(x) = —b(x) (14x%) < O.

4, Some Properties of the Equations.

We wish to give a procedure to find the solutions of both systems
of equations (2.5) and (2.6). The idea is that given a suitable X, we
find X, from the first equation, then for fixed % and X obtain
Xq from the second equation, based on the x, and xq we get X, from

the third equation, finally we obtain X from the last second equation.

%
In other words, for fixed X, We can get another solution X, from the

10



_ *
last equation. If the difference between X and Xy is very small,
then XyseeesX, are the solutions required; otherwise we modify Xy and
repeat the above process. We will prove the process approaches the

solution.

The equations in (2.5) and (2.6) can be classified into four’
groups. (They are (4.1), (4.2), (4.5) and (4.7).) Now we discuss
their properties respectively.

Let Xml""’xmk

of (2.5) and (2.6), respectively. When m = 2, there is only one equation

and xm0(=0), X oq00e 00Xy denote the‘solutlons

in (2.5), i.e.

$(0) = x, (1-0(0)) = %x, .

Thus Xyp = 2¢(0) =y2/m = .797885.

Theorem 1. For any given Xq > 0, the equation

(4.1) le(O,%(xl+x2)) =1
or
(4.1)" $(0) =0 Ca(x +x,)) = x (8 C5(x +x,))-8(0))

If

has a unique solution x, = gz(xl), say, if and only if =x, < x

2 1 21°

the condition is satisfied the function gz(xl) is strictly increasing.
Proof. Let

F(xl,xz) = ].—XlM(O,%(Xl""xz)) ’ X2 d xl *

11



From Lemma 2 we have

4 - 1 ' ¥
FX (xl,xz) L ley(O,y) 0

>
—]
2 y-ﬁ(xl+xz)

and

F(xl,xl) = l—le(O,xl) < 0.

Thus for given Xy > 0 the equation (4.1) has a unique solution if and

o

only if F(xl,m) > As

F(x;,%) 1-x,M(0,®) = 1-x,M(0) = 1-x, vul2 .

F(xl,w) > 0 if and only if X, < 2/m = Xpq -

If %51 > X1 gz(xl) is strictly increasing and if dx2/dxl

_G;l(xl’XZ)/Géz(xl’XZ) > 0, where (cf. (4.1)1)

Glxy,%,) = 0(0)=0 (5(x ) )%, (8Cs(x +x,)) =) .

It is easily shown that

L
Gx (xl,xz)

and

G}'{l(xl,xz) = %(xz—xl)¢(l/z(xl+xz))— (<I>(‘/z(x1+x2))—1/z)

H(xl’xz) H]

say. From Lemma 3

12



H(0,x,) = % x,6(5 x,) - 005 x,) +

% 6Cs x,) s x,+2M0 x,)-11 < 0 .
As

By Gopoxy) = =k 9Cstaphny)) 3+ ) < 0.,

H(xl,xz) <0 for 0<x <x

1 99 thus dledxl > 0. Q.E.D.

As x, = gz(xl) is a monotonic function, there exist a = g2(0+)
and b = gz(x21). It can be verified that a =0 and b =, i.e., the
function X, = gz(xl) is increasing from 0 to <« when %y is from

0 to x21.

Theorem 2. For any given Xy > 0, the equation

(4.2) sz(%(xl+x2)) =1
or
(4.2)" §Calx +5,)) = %, (10 (s, +x,)))

has a unique solution X, = h(xl) and h(xl) is strictly increasing.
Proof. Let

By (3.9) we have

13



F(Xl,xl) = ¢(X1)’X1(l—¢(x1)) = ¢(x) (1-xM(x)) > 0
and F(xl,m) = 0., TFurther we have

1 - 1 1 - =M (1
sz(xl,xz) ¢ Ca(x,+x,)) DPalxy=x, )-MCs(x,+x,)) ]
As M(x) is strictly increasing with M(0) = v¥7/2 and t(x2) = %(xz—xl)
is a strictly increasing function of X, with t(0) =-% X1 there exists

. B 1 1
an X (depending on xl) such that Fx (xl,xz) < 0 if X, < Xy

0
2
] . PR .
sz(xl,xz) >0 if X, > Xg- Combining the above facts we obtain

Figure 1, the graph of F(xl,xz) as a function of Xy

F(xl,xz)

Figure 1

Hence the equation has a unique solution. Since F; (xl,xz) < 0 in the
2

neighborhood of (xl,h(xl)) and

F;l(xl,xz) = %(xz-xl)¢(%(xl+x2)) >0,

we see dx2/dx1 > 0 in the neighborhood of (Xi’h(xl)) for all X > 0.

Q.E.D.

14



Remark 1. In particular, when Xy = 0 the equation (4.2)' reduces to
(4.3) $Cs x) = x(1-0(% %)) .

It has a unique solution and the solution is 1.224014 by the bisection

procedure or Newton procedure. It is the solution for Xy in the

case of m= 3, i.e., Xy, = 1.224014.

Remark 2. It can be verified that when xy is from 0 to o, x2=h(xl)

is fr X to oo,
s om 31

Lemma 4. If 0 <y<v/(8/3) log 2

(4.4) L yo(s y) < (y) - dCs y) .

Proof. Let

£(y) =%y y) - ¥(y) +2Cs y)

As
y _1 2
L yo(y) <—if e %t gt < byo sy,
2t 4y
we have

£(y) < %yoCGsy)-% yo(y) = 4y (d>(1/2y)_- 26(y))

2
Ly 6Csy) (1-2e" /8y (g

H

if y2 < (8/3)1og 2. Q.E.D.

15



Theorem 3. For any given X > 0, the equation

(4.5) le(% xl,%(xl+x2)) =1
or
(4.5)" 65 x)) -9 Calxyh,)) = x; [0Cs(xgx,)) = 005 x)]

has a wunique solution X, = tZ(Xl) if and only if % < x31(=l.224014).

And tz(xl) is a strictly increasing function.
Proof. Let

= 1= 1. 1
F(xl,xz) 1 xiM(z xl,f(xl+x2))
From Lemma 2 we have

F; (Xl,Xz) = —3§le;(% xl,y) 0

>
-l
2 y—é(X1+X2)

and

= 1 1
F(xl,xl) 1 le(ﬁ xl,xl) <0 .

Thus the equation (4.5) has a unique solution if and only if F(xl,W)2>0.
Noting F(xl,w) = l-le(% xl,m) = 1—le(% xl), from the property of the
equation (4.3), F(xl,w) > 0 4if and only if Xy < Xa1 (cf. Figure 1.).

In order to prove tz(xl) is monotonic, we start at (4.5)'. Let
G(xy5x,) = ¢Cs %) - 9Calxy+x))) - %, [0Cs(x+x,)) - (s %) ]

We have

16



6 (Kpp%p) = Hymxy) $CaCayt))> 0,

G (xy%y) = ey 0am)) +iCeyx b Calxyhm, )- B (s +x,)) + 05 x)) = H(xy,x,),

and x. < X,...

% 1< %31

say. Then dx2/dx1 >0 if H(xl,xz) <0 for 0c< Xy

By Lemma 4, for any 0 < x. < x31(< (8/3)1n 2)

1

H(xl,xl) = ;f.xl¢(l§xl) - [<I>(x1)-<1>(15x1)] < 0,

' __1 2 2
sz(xl,xz) = 16 ¢(%(x1+x2))(44-x2 xl) <0 .

The theorem follows. Q.E.D.

It can be shown that X, = tz(xl) is from zero to ® as X, Bgoes

from zero to x31.

In the case of m=4(k=2), the system (2.5) reduces to

(4.1)" $(0) = $Cslx +x,)) = x, [0Cs(x +x,)) - %]

(4.2)" $Cs(xp+x,)) = x, [1-0Cs(x +x,))]

From any given x, > 0 we can obtain X, = gz(xl) (if x; < x21) from

(4.1)" and x; = h(x from (4.2)', respectively. Figure 2 is the

1)

graph of x, and x;. By computation (in detail later), we find

2

x,, = 0.452781 and x

41 42 = 1.510437.

17



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 1

Figure 2

In the case of m = 2k(k>2), we need to solve the system of equa-

tions (2.5). From Theorem 1, for any O < xg < Xyq there exists a

unique solution x, = gz(xl) by the first equation of (2.5). We wish

to obtain Xg = g3(xl) from the second equation of (2.5) based on the

Xy and x, = gz(xl).

Lemma 5. For any given (xl,gz(xl)), the equation

(4.6) XZM(%(xl+x2), %(x2+x3)) =1
or

(4.6)"  9Ca(xy4x,)) - 9Ca(x,x3)) = x,[2(5(xy4xy)) = 8Cs(x 4x,)) ]
has a unique solution Xy = g3(xl) if and omly if Xy < Xpqe

18



Proof. Let
F(xl’x2!x3) = l—szG’é(Xl'l'xz)s ;i(x2+x3)) ’ X _>_ Xn 2 X,
By using Lemma 2 we have

' = =1 '
Fx3(xl,x2,x3) ‘iszy(%(Xl+X2),Y) y=%(x2+x3) >0

and
= - S
F(xl,xz,xz) 1 sz(ﬁ(xl+x2),x2) < 0.

Thus the equation (4.6) has a unique solution if and only if F(xl,xz,m)>'0.

As
F(xl,xz,m) =1- sz(lﬁ(x1+x2))

it is the function corresponding to the equation (4.2). From Figure 2

and thy proof of Theorem 2, F(xl,xz,w) >0 if and only if Xy < X Q.E.D.

Similarly, for given X, we have in turn obtained x2==g2(x1),...,xi==gi(xl)

from the 1st,2nd,...,(i-1)th equation of (2.5), then the equation.
(4.7) x MCs(xg_g4x,) 5 B0 b, 1)) = 1

has a unique solution Xig1 = gi+l(x1) if and only if %y < XZi’l. A similar

conclusion is correct for system (2.6).

19



By computation we obtain Figure 3 and Figure 4 for the case of
m = 2k. Figure 3 shows us that each % = gi(xl) is a strictly increasing
function of X And Figure 4 expresses the relationship between X1
and X (depending on 1) and between X1 and x; which is obtained

by solving the last equation of (2.5) for the same X _1°

4 ) Xq ,xz

'y 3 s F % 'Y

¥ -t A v ¥ ¥ + t Xl
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Figure 3
*k
4 4
*
k=2 k=3 k=4 k=15 X
/ -

Figure 4

20



5. Computational Procedure and Results.
Based on the discussion in Section 4, a computational procedure is
given as follows: If m = 2k do the following steps:

1) Take % = (k/(k+1))x as the starting point with

2(k-1),1
Xpq = 0.797885 and let LP =0 and RP = X2(k—1),1’ where (LP,RP)
is the interval in which x will fall.

2k,1

2) For given X> in turn obtaining x2=g2(x1),...,xkfgk(xl)
from the first (k-1) equations of (2.5). TIn other words, for the

X1 solve x,_  from the last equation of (2.5) and denote the solution

k
*

e

3) Let € be a given small constant. (We take € = 10

as x

-5.) There

are the following possible situations:
: * ,
- < ceesX i
a) [xk Xkl £, then X »X,  are taken as the solution of

2k,1 - FrectcoFor kT ke

%
b) Xy < Xy + € , Figure 4 shows that the starting %y is too

small., ILet LP = Xy and X = % (LP+RP), and return to 2).

- €, % is too large. Let RP = Xy and X = L (LP+RP)

(2.5), i.%., X

) > x>
C Xk Xk

and return to 2).

Obviously, the above procedure converges to the solution, because
the length of the interval (LP,RP) reduces to half of the original one
after each repeat. There is a similar procedure for the case of
m = 2k+1.

Tables 1 and 2 list all of X 3 for m being even and m being

b4

odd, m < 31, respectively. If we want to classify the population into
m subclasses, the cut-off points are ixxm,j+xm,j+l)/2’ j=1,2,...,[m/2]-1,

where [x] denotes the largest integer which is less than or equal to x.
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When m is even, zero is a cut-off point. Max (1960) listed {xhj}

and cut-off points up to m < 36 but Tables 1 and 2 have more decimal
places than those given by Max. The first column in Table 1 and Table 2
lists wvalues of (1- loss functions)? which give us the information

for determining the value of m.

Table 3 and Table 4 give probabilities being represented by {xm,j}
for m being even and m being odd, respectively. If m = 2ktl,
Xm,O = 0, and we need list it; but the corresponding probability
should be listed. Hence the forms of Table 2 and Table 4 are a little
different.

Let us look at a use of the Tables. Suppose we want to design
clothes for a group of people and know that height in this group is
distributed according to N(u,oz) with u = 170cm and © = 1l0cm.

Let m be the number of sizeé that we wish to produce, that is we

wish to determine representative heights for m models. If m = 7,

we find from Table 2 that the representative points are Xy = 0,
Xy1 = 0.560607, Xy = 1.188219 and Xy3 = 2.033827. Therefore, the
heights of m = 7 models are yu + x,.0, 1 =1,2,3, i.e. 149.7, 158.1,

71
164.6, 170.0, 175.6, 181.9 and 190.7. The first column of Table 2

shows us that use of these 7 height categories instead of the continuum
represents a loss of information equal to 4.47 as measured by our mini-

mized square loss function (1.1). If we partition the group into 7 sub-
groups, the cut-off points are 153.9 ((l49.7+158.1)/2), 16l.4, 167.3,

172.8, 178.8, and 186.3. The relative frequencies associated with these sub-
groups are 5.36%, 13.74%, 19.87%, 22.08%, 19.87%, 13.74% and 5.36%.by Table 4.
If we assume m = 6, then from Table 1 and Table 3, the representative

points are 151.1, 160.0, 166.8, 173.2, 180.0 and 188.9, the cut-off points
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are 155.6, 163.4, 170.0, 176.6 and 184.5, with corresponding relative fre-
quencies 7.39%, 18.10%, 24.50, 24.50%, 18.01% and 7.39%; and the loss of
information is 5.8%Z. Certainly for m > 10, the increase in information

is quite negligible. It is only for the smaller m values that increasing
or decreasing the number of categories may be significant in the tradeoff

with information gain or loss.
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TABL

E 1 X{m, 3}

{m - even)

24

mi i-L0SS FU J=1 J=a J=3 =4 J=5 J=é =7
i 63. 661990 0. 797885
i 88. 252192 0. 452781 1. 510437
6! 74 2045846 0.317726 1. 000143 1. 893830
! 96, 549558 0. 245112 0. 756060 1. 344048 2. 152724
101 97.712362 0. 199659 0. 609934 1. 057975 1. 591756 2. 346883
12! 98. 373484 0. 168469 0. 511949 0. 876964 1. 2B46063 1. 783980 2. 501750
14} 98, 785352 0. 145751 0. 441444 0. 75046461 1. 0B5993 1. 468234 1. 940410 2. 630429
161 99. 059320 0. 128443 0. 388197 0. 657018 0. 942738 1. 254885 1. 619344 2. 072074
181 99. 250818 0. 114824 0. 344514 0. 584599 0. 834305 1. 102760 1. 400933 1. 748159
201 99, 3898846 0. 103828 0. 312991 0. 526833 0. 749039 (. 984354 1. 239527 1. 525192
221 99. 494100 0. 094761 0. 2854246 0. 479624 0. 6800546 0. 890055 1.114100 1. 358719
241 99, 574232 0. 087154 0. 262357 0. 440290 0. 623002 0. 812935 1.013227 1. 2281946
261 99. 637198 0. 080687 0. 242766 0. 407005 0. 574992 0. 748576 0. 730052 1. 122434
281 99 487480 0. 075117 0. 225920 0. 378458 0. 533995 0. 693966 0. 850102 1. 034604
301 99.7283446 0.070272 0. 211280 0. 353707 0. 498570 0. 647011 0. 800374 0. 960315
mi J=8 =9 J=10 J=11 J=12 J=13 J=14 j=195
161 2. 740425
i8B! 2. 185671 2. 837083
201 1. 860332 2. 2B%442 2. 923058
221 1. 634326 1. 9594668 2. 375024 3. 000824
241 1. 4464226 1. 731595 2. 048884 2. 454031 3. 072078
247 1. 329943 1. 558865 1.819393 2. 129989 2. 530294 3. 138023
281 1. 220415 1. 4214689 1. 644458 1. 899454 2. 204461 2. 597053 3. 199459
301 1. 128976 1. 309258 1. 505270 1. 723212 1.973188 2. 273515 2. 663323 3. 2577469
TABLE 2 X(m: §) {(m - odd)
mi 1-L08S8 FU =1 =2 J=3 =4 J=5 =6 J=7
! 80. 982620 1.224014
i 92. 007208 0. 764582 1. 724227
i 95, 603322 0. 560607 1. 188219 2. 033827
91 97. 219908 0. 4434675 0. 718894 1. 4746651 2. 255903
11! 98. 084844 0. 367515 0. 752492 1. 179063 1. 693290 2. 428242
131 98, 601734 0. 313847 0. 638403 0. 9872046 1. 38B1764 1. 865845 2. G6B793
15] 98. 935282 0. 273945 0. 554949 0.851433 1. 1753646 1. 547025 2. 00BB41 2. 687479
171 99. 163116 0. 243098 0. 491099 0. 7494630 1.026111 1.331750 1. 6846128 2. 130809
191 99 325584 0. 218530 0. 430605 0. 670188 0. 912228 1. 1734637 1. 4465193 1. B0&041
21! 99, 445534 0. 198494 0. 399639 0. 606335 0. 822044 1. 051424 1. 301035 1. 581410
23! 99. 5347046 0. 181846 0. 345723 0. 5538246 0. 748709 0. 9535946 1. 172873 1. 412985
251 99. 607540 0. 167788 0. 337169 0. 509844 0. 687751 0. 873242 1. 049389 1. 2B0453
271 99, 643686 0. 155762 0. 312798 0. 472454 0. 634232 0. BOS914 0. 983741 1. 172690
L 291 99.708938 0. 145357 0. 271748 0. 440256 0. 592077 0. 748591 0. 711489 1. 082946
31! 99.745920 0. 136258 0. 273375 0. 412228 0. 553784 0. 699141 0. 849610 1. 0046826
mi j=8 =9 J=10 J=11 J=12 =13 J=14 J=195
171 2. 790329
191 2. 237125 2. 881189
211 1. 911404 2. 331491 2. 962832
231 1. 684276 2. 005400 2. 416442 3. 037181
251 1. 512767 1. 776563 2. 090355 2. 493931 3. 105654
271 1. 376945 1. 6027462 1. BAHO301 2. 167977 2. 565299 3. 169331
291 1. 265876 1. 464410 1. 684760 1. 937043 2. 239604 2 631492 3. 229091
311 1. 172912 1. 350754 1. 544445 1. 760177 2. 008044 2. 306347 2. 674096 3. 285904



TABLE 3

m: =0 J=1 =2 J=3 =4 J=5 3=6 =7
; 0. 500000
H 0. 336859 0. 163145
; 0. 245031 0. 181023 0. 73944
! 0. 191669 0. 161484 0. 106654 0. 040192
101 0. 157187 0. 140660 0. 109548 0. 068155 0. 024450
121 0. 133151 0. 123152 0. 103965 0. 077349 0. 0446331 0. 016053
i4} 0. 1154467 0. 108943 0. 096347 0. 078445 0. 056424 0. 0330192 0.011135
161 0. 101920 0.097456 0. 088733 0. 076185 0. 060509 O. 042737 0. 024412
il 0. 091214 0. 088020 0. 081744 0. 0724633 0.061078 ©. 0474635 0. 033087
20) 0. 082545 0. 0BO180 0. 075517 0. 068704 0. 059974 O. 049653 0. 038183
! 0. 073382 0.073582 0. 070025 0. 064801 0. 058058 0. 050002 0. 040897
24} 0. 069344 0. 0679563 0. 065187 0. 061097 0. 055789 0. 049396 0. 042090
26] 0. 064239 0. 063127 0. 060920 0. 057659 0. 053409 0. 048259 0. 042326
281 0. 059822 0.058924 0. 037140 0. 054499 0.051045 0. 04&E840 0. 041967
304 0. 055976 0.055241 0. 053779 0. 0514610 0. 048744 0. 045291 0. 041244
mi J=8 =9 =10 J=11 J=12 =13 J=14 J=15
14t O 008048
18 0. 018583 0. 006005
201 0. 0246166 0. 014483 0. 004595
221 0. 031093 0. 021065 0.011508 0. 003588
241 0. 034088 0. 025671 0.017217 0. 009290 ©. 002848
261 0. 035753 0. 028717 0©.021448 0. 014253 0. 007599 0. 002291
281 0. 036523 0. 030627 0. 024424 0. 018107 0. 011929 0. 006286 0. 00LB64
301 0. 036695 0. 031727 0. 026439 0. 020953 0. 015426 0. 010076 ©. 005247 0. 001530
TABLE &
mi J=0 J=1 J=2 =3 =4 =9 =4 =7
i 0. 45944647 Q. 270266
i 0297755 0. 244450 0. 106473
1 0. 220736 0. 198676 0. 137365 0. 053581
71 0. 175560 0. 164374 0. 132345 0. 084507 0. 030993
117 0. 1457946 0. 139364 0. 120641 0. 09160% 0. 055818 0. 0194654
131 0. 1244695 0. 120660 0. 108828 0. 090057 0. 065906 0. 038911 ©. 013292
151 0. 108947 0. 106253 0. 098305 0. 085535 0. 0648711 0. 049022 0. 028276 0. 009424
171 0. 094744 0. 094855 0.08B9264 0. 080204 0. 068094 0.053559 0. 037495 0. 021230
121 0.087007 0. 0854633 0. 081552 0. 074901 0. 045922 0. 054977 0. 042558 0. 029353
211 0. 079058 0. 078027 0.074958 0. 069935 0. 063107 0. 054495 0. 044993 0. 034393
231 0. 072446 0. 071652 0. 0469286 0. 065402 0. 060095 0.053505 0. 045822 0. 037285
251 0. 066859 0. 0646235 0. 064373 0. 061309 0. 057105 0. 051854 0. 045484 0. 038750
271 0. 062077 0. 061578 0. 060086 0. 0574626 0. 054240 0. 049993 0. 044972 0. 039283
291 0. 057938 0. 057532 0. 056318 0. 054313 0. 051546 0. 048045 0. 043929 0. 039215
311 0. 054317 0. 053984 0.052984 0. 051328 0. 049040 0.044152 0. 042708 0. 038743
m! =8 J=9 J=10 J=11 J=1i2 J=13 J=14 J=195
17§ 0. 006927
191 0. 0146363 0. 005238
211 0. 023430 0. 012882 0. 004051
231 0. 028207 0. 0192012 0.010321 0. 003190
251 0. 031248 0. 023432 0. 0154642 §. 008389 0. 002550
271 0. Q33057 0. 026455 0. 0194683 0. 013022 0. 006903 0. 002064
271 0. 034013 0. 028430 0. 022600 0. 0164695 0. 010952 0. 005737 0. 001487
311 0.034382 0. 0294642 0.0245631 0. 019462 0. 014281 0. 009289 0. 004808 0. 001390
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